加入收藏在线咨询

手 机:15926369272
电 话:027-87109391
传 真:027-87109291
邮 箱:water027@126.com
网 址:http://www.water027.com
厂 址:武汉市江夏经济开发区大花岭工业园B区B2栋

产品中心

当前位置:首页 > 产品中心 > 制水设备系列 > 按处理水质不同分类
循环冷却水设备

 

在工业生产中,循环冷却水系统贯穿于某些生产装置或设备中,以水为冷却介质循环运行,在交换设备余热保护其正常运转的同时也节约了大量的水资源。按照循环冷却水系统的结构特点可分为敞开式循环体系和密闭式循环体系,前者一般在大型循环冷却水系统中应用,如火力发电机组、中央空调机组等,与空气直接接触,补水量较大;而后者一般存在于小型的循环冷却水系统中,如加工机床、空压机、空分设备、电焊机等设备,不与空气直接相通,耗水量较小。但在循环冷却水系统实际运行中,由于循环冷却水的温度、盐份、pH值等均适合微生物的繁殖和水垢的生成,若不加以控制,微生物繁殖将导致粘泥堵塞热交换器,而水垢也会影响输送管线的流量,并且在粘泥沉积的地方会产生垢下腐蚀。而且从节约水资源和减少排污方面考虑,一般要求循环冷却水的浓缩倍率设计在一定范围内,从而使得水质处于不稳定状态,势必造成设备换热管和水管道内壁生成附着物和换热管材质发生腐蚀。由于附着物的传热性较差,从而大大降低了设备的换热效率;而换热管的腐蚀会减弱其机械强度,甚至出现穿孔,使冷却水发生泄漏,从而影响整个设备系统的正常运行。总之,在外界条件(如温度、流速、浓度)改变时,循环冷却水水质多表现为不稳定的状态,极易产生金属材质腐蚀、设备表面结垢、粘泥沉积与微生物滋生等三类问题。如不进行科学的水处理,势必会引起管道堵塞、腐蚀泄漏、换热效率降低等一系列问题,对系统设备和管道造成损坏或非计划性停机停产。为了使循环冷却水系统正常运行,防止循环冷却水在冷却设备、输水管线内形成污垢、产生腐蚀及附着生物粘泥,提高热交换设备的冷却效果,确保生产运行的经济性和安全性,就必须对循环冷却水系统进行清洗除垢及缓蚀、阻垢分散、菌藻控制等日常的水质稳定处理。目前最为有效的措施是通过投加阻垢分散剂、缓蚀阻垢剂、杀菌灭藻剂等化学水质稳定剂以降低设备和管道的腐蚀,控制结垢生成,抑制微生物繁衍,保证系统正常安全运行。这不仅能延长设备的使用寿命,降低动力消耗,并且能节约能源和水资源,减少污水排放,对环境保护有非常深远的意义。

一、循环冷却水系统存在的问题

在工业循环冷却水系统中由于水质不稳定而易引起系统结垢、腐蚀、生物粘泥及菌藻滋生等不良后果。

1 腐蚀

1.1 碳钢材质与水中的氧气作用而发生腐蚀,其反应如下:

Fe + O2 + H2O       Fe(OH)3

1.2 有害离子引起的腐蚀

循环水在浓缩过程中,各种盐类的浓度相应增加,当Cl-和SO42-离子浓度较高时,会使金属表面保护膜的防腐性能降低。尤其是Cl-的离子半径小、穿透性强,容易破坏金属表面的保护膜增加其腐蚀反应的阳极过程速度,引起金属的局部腐蚀。

1.3 两种不同的金属接触时,因金属间电位差而造成电池腐蚀,例如热交换器的铜管与碳钢端板,其接触部分的钢铁材质会因此加速腐蚀。

1.4 水中微生物的滋生也会产生细菌性腐蚀,如硫酸还原菌、铁细菌等。

1.5 其它引起腐蚀的影响因素有:pH值、溶解的气体、温度、流速等。

2 结垢及沉积

在循环冷却水系统中,所溶解的重碳酸盐浓度随着蒸发浓缩而增加,当其浓度达到饱和状态,或者在经过换热器传热表面使水温升高时,水中盐份溶解平衡遭到破坏,会发生下列反应即水垢的生成:

Ca(HCO3)2 =CaCO3↓+CO2↑+H2O

生成的CaCO3水垢沉积在换热器的传热表面,形成一层硬垢,导热性能很差,严重影响换热效率。

其次,循环水系统设备、管道主要材质是碳钢,其腐蚀产物主要是氢氧化物和铁的氧化物的水合物,呈胶体状态,稳定地悬浮于水中,但当通过热交换器时易在受热面胶体相互凝集沉淀。沉淀的Fe2O3由于它的不连续性和不致密性而对金属无保护作用,而且由于它的磁性,粘着力强,且比重大,消除困难,形成污垢。

另外,循环水中也有天然有机物、泥沙、微生物群落等悬浮物,它们于流速慢或温度高的地方慢慢沉积而形成污垢沉积在设备、管道表面。此类污垢一般较为疏松,易用水冲洗去除。

3 微生物影响

微生物可分为细菌、真菌及藻类,由于其散布在自然界各个角落,而循环水之温度、盐份、pH值、溶解氧等比较适合微生物繁殖。若未能得到有效控制,微生物不断滋生,并分泌出大量粘液,将水中不溶性杂质粘结在一起,产生粘泥附着于设备和管道的内表面,阻碍水的流动和系统热交换,且在粘泥沉积地方往往会造成沉积物下腐蚀。

4 危害与不良影响

上述的水垢、腐蚀和微生物滋生等这三者不是孤立的,是互相联系和相互影响的,如水垢和污垢往往结合在一起,结垢和生物粘泥又能引起或加重腐蚀。这些水垢、腐蚀物及生物粘泥给设备的安全运行带来了严重的危害。

4.1设备管道水垢附着:水垢的导热系数极低,降低传热效率或传热不匀,影响设备制冷效果,使换热器压力升高,增大压缩机正背面压力差,导致电机负荷增加,造成高压运行,增加电能消耗,严重时可直接造成主机高压事故停机。

4.2 使系统水循环量减少:沉积物(如水垢、微生物粘泥)覆盖在循环水系统设备管道或换热器流道表面,严重的将堵塞管道,阻碍水流动,使冷冻水循环量减少,热交换效率进一步降低。

4.3腐蚀设备和管道:系统管道及设备内壁常因腐蚀造成锈渣脱落,脱落的锈渣会堵塞盘管,使换热效果下降,严重时造成穿孔泄漏等重大停机事故;同时腐蚀的存在还使设备的使用寿命大为缩短。

二、化学清洗说明

首先对于存在上述问题的循环冷却水系统进行化学清洗。清洗之前需对水质进行采样分析,调查了解设备运行使用情况,判断污垢主要成分。根据水质分析、系统材质和设备系统运行与结垢情况制订清洗方案。其具体操作步骤分为:

清水冲洗:启动系统循环水泵,用大流量的清水尽可能的冲洗掉系统中的灰尘、泥沙、脱落的藻类及腐蚀产物等疏松的污垢,以节约用清洗药剂量,降低清洗成本,为下一步的化学清洗做准备。

杀菌剥离:排放出污水后补充清水,在循环水系统内的冷却水池中分别一次性的加入杀菌剥离剂,杀死系统中菌藻类微生物,并使设备、管道内表面附着的生物粘泥剥离脱落;通过水泵循环运行12~24小时,进行杀菌灭藻剥离污垢,最后从最低点排放污水。

清洗除垢:系统补入清水后加入具有溶垢、渗透与分散作用的清洗剂和清洗缓蚀剂,启动水泵将管道系统内的浮锈、水垢、油污等清洗下来,分散于水中,随水排出,还原清洁的金属表面。循环清洗两次,每次12小时,并要求加清水置换排污至浊度小于20ppm即视为清洗结束,最后将Y型过滤器上的过滤网拆开,蘸药剂手工清洗干净。

钝化或预膜:设备管道经过清洗后其金属表面处于十分活跃的活性状态,极易二次氧化锈蚀。A:若设备清洗后封存,则对设备进行预膜钝化处理;B:若设备清洗后立即投入使用,则需进行预膜缓蚀处理,以更好的保护洁净的金属表面防止氧化锈蚀。

循环冷却水系统清洗过程完成后,就进入了日常水质稳定维护阶段,即通过加入水质稳定剂,降低金属材质生锈速率,抑制水中菌藻滋生,防止钙、镁盐结垢、沉淀,最大限度的保持设备和管道的金属表面清洁。这样就可减少设备清洗次数,延长其使用寿命。

三、水质稳定处理

工业循环冷却水系统的日常水质稳定处理是相当重要的,不仅可延长管线和设备的使用寿命,即水处理的效果是使管线和设备达到设计的使用寿命;而且能节约大量的电能及水资源;还可防止设备水系统结垢、腐蚀,菌藻附着,保证系统设备经济而安全运行。

目前,采用化学加药处理方法是循环水质稳定处理中最为有效且经济的技术措施,即根据循环冷却水系统的水质和材质特点,采用合适的水质稳定剂以维持和修补系统内金属表面形成的保护膜,并阻止和分散各种成垢离子结垢,控制菌藻的生成,达到防腐、防垢和控制微生物生长的目的。

加药处理后的循环水质要求符合GB50050-2007《工业循环冷却水处理设计规范》,其中:碳钢腐蚀率 ≤ 0.075mm/a;铜腐蚀率 ≤0.005mm/a;污垢热阻 ≤4.0 ×10-4mk/s;异养细菌总数≤5×105个/mL。

一般来说,用于工业循环冷却水处理的水质稳定剂主要有三大类:阻垢缓蚀剂、缓蚀剂和杀菌灭藻剂。

1.阻垢分散剂

该水质稳定剂为复合型水处理药剂,具有协同增效作用,化学稳定性强,耐高温,低磷环保,可同时控制多种金属材质的腐蚀及污垢的产生,具有良好的阻垢缓蚀效果。本品能通过络合增溶、晶格畸变及吸附分散作用,破坏垢物形成与增长的条件,使Ca2+、Mg2+等致垢离子稳定地溶于水中,对碳酸钙、硫酸钙、磷酸盐及碳酸钡等有卓越的阻垢效果,能很好地控制系统结垢,并对氧化铁、二氧化硅等胶体也有良好的分散作用,同时能在碳钢金属表面形成致密的保护膜,阻止腐蚀性离子的浸入,对设备表面起到良好的缓蚀保护效果,是阻垢性能优良兼具缓蚀效果的高效阻垢缓蚀剂。

2.缓蚀剂

这是一种阳极型缓蚀剂,稳定性能好,能在碳钢、铜及其合金材质表面形成多层致密的高分子防护膜,使金属表面不起氧化还原反应,具有良好的缓蚀性能。

3.杀菌灭藻剂

本品是针对循环冷却水系统极易滋生菌藻的特点而设计的杀生剂配方。

本杀菌灭藻剂为低毒、高效、广谱的杀生剂,分为氧化型和非氧化型两种杀菌剂,能够不可逆的有效控制和杀死范围很广的微生物,本身也能被分解或被微生物降解;具有穿透粘泥和分散或剥离粘泥的能力,兼有优良的粘泥剥离和抑制菌藻繁殖的效果。同时在使用浓度下,与水中的缓蚀剂和阴垢分散剂能够彼此相容。

在循环冷却水系统中,氧化型和非氧化型两种杀菌剂交替投加,则可取得更好的杀菌灭藻和剥离效果,能削弱微生物的耐药性。

四、水质管理

1.浓缩倍数管理

在循环冷却水系统中控制一定值的浓缩倍数对保护设备和节约水资源,减少开支有很大好处。一般要求浓缩倍数在3至6这个范围内为宜,太高了节约水资源意义不大,且增加了结垢的趋势。

由于循环水浓缩时,水中的各种离子随之浓缩,而电导正是反应水中离子浓度多少的数值,浓缩倍数与电导的增长基本上成正比关系。当水浓缩一倍时,电导率值浓缩0.93—0.98倍,所以一般采用浓缩倍数为3时水的对应电导率作为控制值,当水浓缩倍数过高时,则启动排污口,同时加药泵启动,补入相应的被排污水带走的药量。

2.药剂浓度的管理

平时水处理药剂若不维持在一定浓度范围内,则不能充分发挥阻垢缓蚀和杀菌剥离效果;而过量加药则造成经济上的浪费。因此,加药要及时适量。目前,循环水系统加药一般分为两类:一是采用自动加药装置投加;二是根据计算量而采用连续滴加或间歇式投加方式,这种方式也可保证水中药量浓度在有效范围内。

3.日常监测

机组运行期间,最重要的水质管理是掌握补水和循环水的水质。一般来说每月应取水样进行水质分析,以便发现问题及时调整。如出现某个项目超标,则应优化水质稳定剂的配方及其加药量,使之达到合同规定的水质标准。在腐蚀或结垢情况监测时,可采用现场悬挂标准试片或试管,每月或两个月测定一次腐蚀或结垢数据。

经过多年的工业循环冷却水处理现场经验积累与技术总结,我们开发出了多种适合工业循环

上一条产品:
下一条产品:暂无

鄂公网安备 42011102001618号